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Chapter 1

Introduction

This book introduces ontology building using the OWL2 ontology language,
and the Tawny-OWL library. Ontologies are a method for representing
knowledge, generally, but not necessarily, about the world around us. It is
then possible to check that the representation is consistent, as well as draw-
ing conclusions about new knowledge. They are generally used in complex,
knowledge-rich areas of knowledge, including biomedicine.

Many ontology development tools provide a Graphical User Interface,
through which the ontology developer adds the various entities involved in
building an ontology. However, many ontologies contain large and repetitive
sections; for these, ontology development teams often fall back to generating
parts of their ontology programmatically. Tawny-OWL takes a different ap-
proach where ontology development uses a domain-specific language (DSL)
embedded in a full programming language. For structurally simple parts
of an ontology, the various components of an ontology can be specified us-
ing the default convienient and simple Tawny-OWL syntax; for structurally
complex parts, new syntax and new patterns can be built, extending the
environment as a core part of ontology development.

This form of programmatic ontology development is still young. At the
moment, we have used it to produce large ontologies that would have been
difficult using any other technique. However, we also hope that we can also
support easier integration of knowledge-rich structures into applications, so
that ontological data structures can be come a standard part of the pro-
grammers toolkit.
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6 CHAPTER 1. INTRODUCTION

1.1 Status

This manual describes Tawny-OWL 2.0. While more Chapters are planned,
it now describes all the key features of this Tawny-OWL environment.

It is hosted at https://phillord.github.io/take-wing/.

1.2 What is an Ontology

Ontologies are about definitions. It is, perhaps, unsurprising therefore that
amount ontologists there are quite a few debates about what exactly an
ontology is and is not; it is not our intention here to either cover these
arguments, nor to give a comprehensive overview of all the uses of the word.

What is generally agreed is that ontologies describe a set of entities, in
terms of the relationships between these entities, using any of a number of
different relationships. So, for example, we can describe entities in terms
of their class relationships – what is true of a superclass is also true of all
subclasses. Or we can describe the partonomic relationships: the finger is
part of the hand, which is part of the foot.

An ontology is also very similar to a taxonomy; however, ontologies
place much greater emphasis on their computational properties. This makes
ontologies much more suitable for driving applications and code, although
this often comes at the cost of human understandability of the ontology. In
this document, all the ontologies we talk about are represented using specific
language, called OWL (the Ontology Web Language). This has very well-
defined computational properties, and through the document we will explore
the implications of these properties.

We also use the term “ontology” to mean a specific object that you can
manipulate in Tawny-OWL, which is a slightly more constrained use. This
is quite common in many books on programming: we hope that the context
should be clear.

1.3 Who this book is for

We have two primary audiences for this book. The first is for the ontolo-
gist who is interested in Tawny-OWL as the hub of a new environment for
ontology development. The second is for the programmer who is interested
in using the rich computational representation of a domain that ontologies
provide. There is a risk to having two audiences: that we satisfy neither. To
avoid this, the book is built from a series of chapters, each of which covers a

https://phillord.github.io/take-wing/
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discrete topic, either more programmatic or more ontological. It should be
possible to read the chapters independently of each other.

This book does not, however, stand alone. While we try to introduce
the background material, we do not intend that, for example, this book will
serve as an introduction to programming either in general, or specifically in
Clojure. There are many good resources available for this. With ontologies,
we give more of a background introduction, but again, we assume that you
will be willing to read other material to clarify ontology development. Our
hope is that we introduce the material well enough that you feel it is worth
the time to investigate other resources, and we include pointers where it
seems valuable.
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Chapter 2

A Rapid Walk-Through

2.1 A Taster

We take a rapid walk-through an ontology to demonstrate the capabilities of
Tawny-OWL. As with all the examples in this book, the code in this chapter
is complete; it is possible to extract all the snippets from the chapter, run
them and retrieve a complete ontology. Therefore, we need to start with a
preamble, defining a namespace and performing some imports.

(ns take.wing.walk-through

(:refer-clojure :only [])

(:use [tawny.owl]

[tawny.english]

[tawny.reasoner ]))

As we discussed in Section 1.2, the word ontology has quite a few different
meanings, but here we use it to mean a specific computational object; so,
before, we do anything else, we start a new empty ontology, which we call
walk_through; as it happens, we do not need to refer to this object again
because it is now set as the default for the rest of this chapter. We also take
the opportunity to set our choice of reasoner, in this case HermiT. We will
see later how we use this.

(defontology walk_through

:iri "http://purl.org/ontolink/walk_through")

(reasoner-factory :hermit)

Ontologies are all about classes, so we now define two classes one called
Book and one called TakeWing which is a subclass of Book 1. Anything that

1One of the joys of ontology development is that the ontology development community
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10 CHAPTER 2. A RAPID WALK-THROUGH

is true of Book must also be true of TakeWing.

(defclass Book)

(defclass TakeWing

:super Book)

Of course, this does not tell us much about TakeWing as a book. There
are many properties of books, but one of the most informative is the subject
of the book. So, we define a new class of Subject and introduce a property
about which we use to relate books and subjects 2.

(defclass Subject)

(defoproperty about)

Now, we need some subject listings. Of course, there are many of these in
existence already, and Tawny-OWL is fully capable of reusing one of these;
however, for this simple example, it is not necessary, so we define a small
classification of our own. We describe Bird and Ontology as subclasses of
Subject and say that they are different (:disjoint) and do not overlap. We
also describe TawnyOWL as part of the Ontology subject.

(as-subclasses

Subject

:disjoint

(defclass Bird)

(defclass Ontology ))

(defclass TawnyOWL

:super Ontology)

We can now make some basic queries against the statements that we
have made to make sure that they all make sense. So, for example, the
subclasses function lists all of the subclasses of Book, or we can use the
predicate function subclass?. On its own this functionality is enough to
build a simple hierarchy.

is rich with arguments about the correct way to model things. Even, with relatively simple
models it is easy to hit these arguments and, in fact, we have done so here already. There
is a strong argument to say that TakeWing is actually an instance of Book rather than a
subclass, because there is only one of them. Or, that TakeWing is a class because there are
many copies of TakeWing. Or, that it’s a metaclass, because sometimes it operates like a
class and sometimes an individual. In this book, we try to touch on these arguments, but
not get weighed down by them

2Strictly, an object property, hence the “o”. We describe these more fully later
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(subclasses Book)

;; => #{#[ Class 0x660b9d1 "TakeWing"@en]}

(subclass? Book TakeWing)

;;=> true

(subclass? Subject TawnyOWL)

;;=> true

However, the functionality of OWL allows much richer statements than
this. We can extend the existing definition of TakeWing and state that it is
a book that is about TawnyOWL and only about TawnyOWL.

(class

TakeWing

:super

(some-only about TawnyOWL ))

Now, we can build some defined classes. We describe an OntologyBook

as a Book which is about Ontology.

(defclass

OntologyBook

:equivalent

(and Book

(some about Ontology )))

There are two critical points about this definition. The first is that
we had said nothing at all about the relationship between this class and
TakeWing. We can confirm this by asking about the subclasses of OntologyBook,
and showing that our ontology knows of no ontology books.

(subclasses OntologyBook)

;;=> #{}

However, this is not quite true. The second critical part of the defini-
tion, the use of :equivalent. This allows us to use reasoning to infer other
subclasses. For this we use the isubclasses method instead and find that
TakeWing can be infered to be an OntologyBook.

(isubclasses OntologyBook)

;; => #{#[ Class 0x557ef049 "TakeWing"@en]}

We can infer that TakeWing is a subclass of OntologyBook because we
have said that an ontology book is one about ontologies and that this book
is about Tawny-OWL which is sub-topic of ontologies. Even in this simple
example, we need to put together a number of facts to draw this conclusion.

In this case, though, there is some apparent similarity between the def-
inition of OntologyBook and TakeWing – both of them are look relatively
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similar, at least once we substitute Ontology for TawnyOWL in the definition
of TakeWing. Our computational reasoner, however, does not work in this
way, and can draw conclusions even when this similarity does not exist.
Consider this example where we describe books which are not about birds.

(defclass NonBirdBook

:equivalent

(and Book

(not (some about Bird ))))

(subclasses NonBirdBook)

;;=> #{}

(isubclasses NonBirdBook)

;; => #{#[ Class 0x557ef049 "TakeWing"@en]}

Here too, we can classify TakeWing. The chain of logic in this case is that
TakeWing is about Ontology, that Ontology is different from Bird, and that,
therefore, TakeWing is not about Bird which makes it a NonBirdBook.

This ability to infer new knowledge is the meat and drink of computa-
tional ontologies. They allow a rich description of the environment with a
tightly defined semantics which makes that environment comptutationally
accessible. Here, we have only touched on the expressivity of OWL – there
are many constructs that we have not shown yet. We have also used this
for only for a small ontology, but as the ontologies grow larger, the value
increases.

For existing ontology developers, this will be familiar ground. Tawny-
OWL, however, brings something new to other mechanisms for developing
ontologies; that is a fully programmatic environment. As well as the abil-
ity to automate any part of ontology development that we choose, this also
brings a rich set of highly-developed tools that programmers have been devel-
oping and using for many years to develop software in a repeatable, scalable
and highly-collaborative way. It is this which we explore next.

2.2 Environment

Tawny-OWL takes a different approach to other ontology development en-
vironments. It is not an application, it is just a programmatic library3.

3Sort of. In other environments, we have argued that Tawny-OWL is an textual ap-
plication rather than a programmatic library. In reality, it is a bit of both: it is a library
which is designed with development rather than manipulation of ontologies as its primary
purpose. For the latter, we would have done things rather differently.
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This has a key advantage over a more traditional ontology editor; rather
than providing a complete environment, Tawny-OWL just recasts ontology
development as a form of software development and borrows its entire envi-
ronment from software development. This means we can reuse the software
engineering environment; our experience is that the richness and maturity of
software development tools far outweights any loss of specificity to ontology
development.

Our hope is that for structurally simple ontologies, Tawny-OWL should
be usable by non-programmers, with a simple and straight-forward syntax.
In this section, we introduce the core technology and the basic environment
that is needed to make effective use of Tawny-OWL, as well as some optional
extras.

2.2.1 The OWL API

Tawny-OWL is built using the http://owlapi.sourceforge.net/[OWL API].
This library is a comprehensive tool for generating, transforming and using
OWL Ontologies. It is widely used, and is the basis for the Protege 4
editor[?]. Being based on this library, Tawny-OWL is reliable and standard-
compliant (or at least as reliable and standard-compliant as Protege!). It is
also easy to integrate directly with other tools written using the OWL API,
include Protege.

2.2.2 Clojure

Tawny-OWL is a programmatic library build on top of the Clojure language.
Tawny-OWL takes many things from Clojure. These include:

• the basic syntax with parentheses and with :keywords

• the ability to effectively add new syntax

• the ability to extend Tawny-OWL with patterns

• integration with other data sources

• the test environment

• the build, dependency and deployment tools

In addition, most of the tools and environment that Tawny-OWL use to
enable development were built for Clojure and are used directly with little
or no additions. These include:

http://owlapi.sourceforge.net/[OWL
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• IDEs or editors used for writing Clojure

• the leiningen build tool

Tawny-OWL inherits a line-orientated syntax which means that it works
well with tools written for any programming language; most notable among
these are version control systems which enable highly collaborative working
on ontologies.

Clojure is treated as a programmatic library – the user never starts or
runs Clojure, and there is no clojure command. Rather confusingly, this
role is fulfilled by Leiningen, which is the next item on the list.

2.2.3 Leiningen

Leiningen is a tool for working with Clojure projects. Given a directory
structure, and some source code leiningen will perform many project tasks
including checking, testing, releasing and deploying the project. In addition
to these, it has two critical functions that every Tawny-OWL project will use:
first, it manages dependencies, which means it will download both Tawny-
OWL and Clojure; second, it starts a REPL which is the principle means
by which the user will directly or indirectly interact with Tawny-OWL.

2.2.4 REPL

Clojure provides a REPL – Read-Eval-Print-Loop. This is the same thing as
a shell, or command line. For instance, we can the following into a Clojure
REPL, and it will print the return value, or 2 in this case.

;; returns 2

(+ 1 1)

The most usual way to start a REPL is to use leiningen which then
sets up the appropriate libraries for the local project. For example, lein
repl in the source code for this document, loads a REPL with Tawny-OWL
pre-loaded. In practice, most people use the REPL indirectly through their
IDE.

2.2.5 IDE or Editor

Clojure is supported by a wide variety of editors, which in turn means that
they can be used for Tawny-OWL. The choice of an editor is a very personal
one (I use Emacs), but in practice any good editor will work.

http://www.leiningen.org
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The editor has two main roles. Firstly, as the name suggests it provides
a rich environment for writing Tawny-OWL commands. Secondly, the IDE
will start and interact with a REPL for you. This allows you to add or
remove new classes and other entities to an ontology interactively. Tawny-
OWL has been designed to take advantage of an IDE environment; in most
cases, for example, auto-completion will happen for you.

2.2.6 Testing

Tawny-OWL can use any of the testing enviroments that come with Clojure,
including clojure.test which is the most basic environment provided with
Clojure. This integrates well with both leiningen or an IDE both of which
will run tests for you and report on test cases.

2.2.7 Version Control and Collaboration

Most ontologies are developed by many people, so some form of collabo-
ration support is needed. In general, with Tawny-OWL we achieve this in
the same way that programmers do; rather than providing a collaborative
environment where multiple people can edit the environment at the same
time, we use version control where different developers use slightly different
versions of the ontology, and then merge them together at the end. This
works well with Tawny-OWL as it has an attractive, line-orientated syntax.
The various version control tools can scale easily to thousands of developers
which is well in excess of most ontology projects. For this purpose, we use
git.

2.2.8 Continuous Integration

An ontology can be continuously integrated with both other ontologies that
it depends on, and with the software environment which uses it. Unlike
other ontology continuous integration systems, Tawny-OWL is just a library
– so anything that works with Clojure (or more abstractly a Java Virtual
Machine) will also work with Tawny-OWL.

2.3 Recap

In this Chapter, we have built a small basic ontology which non-the-less
shows the computational power of OWL ontologies, while surveying the
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advantages that Tawny-OWL brings as a development environment for on-
tologies.



Chapter 3

An Introduction to OWL

In Section 1.2, we briefly touched on the issue of what is an ontology and
noted that it’s not easy. In this section, we will take a more pragmatic view
point and describe OWL and its notion of an ontology.

OWL2 is the second version of the Ontology Web Language; it is a W3C
recommendation1. As you might expect, this means that it embeds well
with other W3C standards – it can be serialized as XML or RDF, and it
makes quite intensive use of URLs.

It also builds on many years of Computing research; underneath each of
the statements that we can make in OWL is a mapping to a piece of formal
maths which gives a tightly defined semantics. We will only touch of this
semantics lightly in this document2; the key point is that this specification
makes it possible to build software around OWL and have it come to a
clearly defined conclusions.

Using the statements in OWL we can build models of the world. That
is we can describe the real world around us using statements in OWL; as a
result, we can use these underlying semantics of OWL to draw conclusions
about these models. If we do this right, these conclusions should also be
true of the real world as well.

There are a number of different ways that we could build models, but
OWL does this with three entities: individuals, classes and properties. In
addition, to enable OWL ontologies to describe the real world, it also has
two further entities: identifiers and annotations.

1W3C is the body that would define standards for the Web, if it made standards.
Except that it does not; it just releases recommendations.

2Mostly because if I touched on it more heavily, I’d probably get it wrong
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3.1 Individuals

At heart, OWL ontologies describe a set of individuals. In the real world,
these would be the things that we want to describe. Looking around me now,
I can see a large number of these things: a computer screen (obviously); a
keyboard; assorted other pieces of computing detritus; a guitar; a door; and,
finally, somewhat incongruously, a toilet seat. Individuals in OWL can also
describe more abstract things such as the image on my screen, the process
of me typing and so forth.

Sometimes, individuals are also called instances; we do not use this term
here, because it causes confusion with people who come from an Object-
Oriented programming background where it has a related but subtly differ-
ent meaning3.

In OWL ontologies, individuals also have a name or an identifier4. Actu-
ally, they can any number of names and, perhaps, unintuitively, OWL will
not assume that they have an unique name; so, unless you tell it explicitly,
OWL will not know whether two different identifiers describe two different
individuals with one name each, or one individual with two names.

3.2 Properties

Individuals can have relations between them. In OWL, these are called
properties5. So, the I am typing on my Keyboard which describes the re-
lationship between two individuals. In OWL properties are binary – that
is they only describe a relationship between two individuals6. Properties in
OWL have a number of characteristics, which we will describe later.

It is also possible to use properties to describe a relationship between an
individual and something concrete – such as a numeric value or a string.

3.3 Classes

Classes in OWL are sets on individuals. All the individuals in a class
will share some of the same characteristics. Classes have relationships be-
tween themselves which turn them into a hierarchy. So, both my Trackball,

3Like “object” which also has an ontological meaning.
4Although, some individuals are anonymous. We will discuss more on the form of

identifiers later.
5Roughly equivalent to properties or attributes in OO terminology
6This is less restrictive than it sounds.



3.4. IDENTIFIERS 19

Keyboard and Monitor are subclasses of Peripherals. In OWL, the meaning
of the subclass relationship is quite specific – if A is a subclass of B, then all
individuals of class A are also individuals of class B.

For people coming from an programming background, this looks very
like object-orientation (OO) and its notion of instances, classes and sub-
classes. But there is subtle, but important difference. In OO, instances are
explicitly stated to be part of a class, and inherit properties from this class.
In OWL, it is the other way around: individuals have properties, and then
properties that they have define the classes that they are in. We can see
this in Section 2.1, where we can infer that TakeWing is an OntologyBook.

3.4 Identifiers

To make all of the logical entities in OWL useful, we need identifiers which
allows us to refer to them. Again, most programming languages have this
sort of capability: variable names, class names and so forth. OWL is rather
different here and shows its web heritage; it uses IRIs for identifiers7.

Identifiers in OWL, therefore, are effectively universal; a class in one
ontology can unambiguously refer to a class in another. More over, it can use
and share identifiers described and defined in all the other web technologies.

Tawny-OWL maps these identifiers on to its own which inherits from
its base language of Clojure; this largely stems from the requirements for
identifiers which are easy to type and use.

3.5 Annotations

Those who are interested in the underlying semantics of OWL often describe
annotations are extra-logically. This rather downgrades their importance; it
is annotations that allow the underlying logic to relate to the real world
around. The underlying logic of OWL may provides predictable behaviour,
but is the annotations which provide all the utility of an OWL ontology, by
relating to the real world and to the user.

OWL allows annotations on pretty much anything. Classes, individuals
and properties can all have annotations; the axioms that assert these entities
can have annotations; annotations can have annotations; it is even possible
to use annotations to provide descriptions of why annotations have annota-
tions. It is entirely possible that the designers of OWL got a little carried

7IRIs are not the same thing as URIs, which are not the same thing as URLs. But the
differences between them are relative unimportant here.
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away with annotations, Tawny-OWL supports the many different forms of
annotation anyway.



Chapter 4

Getting Started

In this section, we will build the most ontology and start to show the basic
capabilities of Tawny-OWL.

As described in , Tawny-OWL can be used with several different toolchains.
In this section, we will run through the building a very simple ontology.
There is an section describing how to achieve each of these steps with spe-
cific tool chains.

4.0.1 Installing Leiningen

To build an ontology, we need a build tool, for which we will use leiningen.
This is a command line application and is simple to install following the
instructions on their website.

Installing leiningen is the only manual step involved. It is leiningen that
is responsible for everything else; it downloads Tawny-OWL and all of its
dependencies for you.

4.0.2 Creating a New Project

Now, we will create a new project. Tawny-OWL makes this easy with a
pre-defined template.

lein new ontology helloworld

This will create a new directory called helloworld. If we change into this
directory, we find that this has created a number of directories and files.

Before we look in more detail at these files, let start by generating an
ontology file. Simply type:

21

https://leiningen.org
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Figure 4.1: HelloWorld in nightlight

lein run

You should see that a new file has been created called helloworld.omn

which contains a very simple ontology with a single class called HelloWorld.

4.0.3 Editing Our Ontology

Tawny-OWL provides a fully programmatic development environment for
ontologies; as such, it is possible to change or update an ontology with an
editor or any IDE. In this section, we will use a simple, web-based editor
that integrates tightly with leiningen.

To use this try:

lein with-profile light nightlight

This should return something like:

Started Nightlight on http://localhost:4000

Open this address in a web-browser and you should now be able to see
the editor, as see in Figure4.1.

First, we consider the file helloworld.clj; this looks like so:

(ns helloworld.helloworld

(:use [tawny.owl]))
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(defontology helloworld

:iri "http:// example.com/helloworld")

(defclass HelloWorld)

Breaking this down. We first start with by introducing the namespace
and useing Tawny-OWL. These identical statements appear at the beginning
of every Tawny-OWL file: the namespace introduced must match the file
name.

Next, we create a new ontology called helloworld, with a single class also
called (somewhat repetitively), HelloWorld. Tawny-OWL is case-sensitive,
so these two things are independent from each other.

The second file, core.clj is more programmatic in nature. It requires
helloworld, and then defines a function called -main which saves the ontol-
ogy.

(ns helloworld.core

[:use [tawny.owl]]

[:require [helloworld.helloworld ]])

(defn -main [& args]

(save-ontology helloworld.helloworld/helloworld "helloworld.omn"))

The practical upshot of this all taken together is that typing

lein run

at the command line will result in a new file (called helloworld.omn)
with an ontology in OWL Manchester Notation (OMN).

4.0.4 Summary

In this section, we have outlined the basic tasks that are needed to build
ontologies with Tawny-OWL: creating a project, creating an ontology, cre-
ating some entities. We have also started to show how to use and query
over them. In the next section, we will build this ontology in full, using it
to demonstrate many parts of Tawny-OWL and OWL ontologies in general.
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Chapter 5

The Pizza Ontology

5.1 Introduction

In this section, we will create a Pizza ontology; we choose pizzas because
they are simple, well-understood and compositional (see here for more).

As we described in a previous Chapter 3, we consider the different types
of entities present in an OWL ontology. The most (and least!) important
of these are individuals. We say that these are the most important because
it is these individuals that are described and constrained by the other ob-
jects. We say that they are the least important because, in practice, many
ontologies do not explicitly describe any individuals at all.

If this seems perverse, consider a menu in a pizza shop. We might see
an item saying ”Margherita. . . 5.50”. The menu makes no statements at all
about an individual pizza. It is saying that any margherita pizza produced
in this resturant is going to (or already has) cost 5.50. From the menu, we
have no idea how many margherita pizzas have been produced or have been
consumed. But, menu is still useful. The menu is comprehensive, tells you
something about all the pizzas that exist (at least in one resturant) and the
different types of pizza. This is different to the bill, which describes individ-
uals – the pizzas that have actually been provided, how many pizza and how
much they all cost. In ontological terms, the menu describes the classes, the
bill describes individuals 1. OWL Ontologies built with Tawny-OWL can
describe either or both of these entities but in most cases focus on classes.

1The analogy between a pizza menu and an ontology is not perfect. With pizza, people
are generally happy with the classes (i.e. the menu) and start arguing once about the
individuals (i.e. the bill); with ontologies it tends to be the other way around
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http://robertdavidstevens.wordpress.com/2010/01/22/why-the-pizza-ontology-tutorial/
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5.2 Creating the Skeleton

As we discussed in Section 4.0.2, it is possible to use leiningen to create a
new ontology project. We will do this now:

lein new ontology take-wing-pizza

This will create a directory called take-wing-pizza2. We can now edit
the files in this directory, starting with take/wing/pizza.clj using either
nightlight as described in Section 4.0.3, or any other IDE.

5.3 Preamble

In Chapter 2, we showed the standard template for a Tawny-OWL file; and
indeed, leiningen has created a pizza themed version for us.

(ns take.wing.pizza

(:require [tawny.owl :refer :all ]))

It is not absolutely critial to understand these statements, but they are
simple enough and worth explaining now, even though they will become
much more relevant and start to exploit the underlying programming lan-
guage of Tawny-OWL, that is Clojure.

Statements in Clojure are also known as “forms”. Pretty much all Clo-
jure forms have the same structure; that is they are delimited by ( and ).
Forms are usually named after the first letters that appear in them, which
is the name of the function they will call; so in this case, we have a ns or
“namespace” form. Forms can be nested. The :require form is an example
of this. In this case, the :require says simply to make the Tawny-OWL
functions available for use. The colon in :require means that this is a key-
word. Tawny-OWL uses these in many places to define parameters, as we
see next. Before we go any further, let’s make this slightly more complex:

(ns take.wing.pizza

(:require [tawny.owl :refer :all]

[tawny.reasoner :as r]))

We will see the importance of tawny.reasoner later. Next, we have a
defontology form which looks like this:

(defontology take-wing-pizza

:iri "http:// example.com/take-wing-pizza")

2The name of this directory is not functional important and be changed at will
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The name of the function defontology tells us something useful; as well
as creating an ontology, we are defining a name which we can use to refer to
the ontology. The name is take-wing-pizza which comes next. Finally, we
define some parameters – in this case, the IRI. All OWL ontologies require
IRIs (strictly the Ontology IRI) by which they can be refered3. Here, we
invent one in the example.com domain. You should change this to an IRI
you control. In this case, we use one from purl.org.

(defontology take-wing-pizza

:iri "http: //purl.org/ontolink/take-wing/pizza")

The semantics of this statement are quite interesting. If we had created
a new database, by default, the database would be considered to be empty –
that is there would be no individuals in it. With an ontology, the opposite is
true. By default, we assume that there could be any number of individuals.
As of yet, we just have not said anything about these individuals.

5.4 Defining Classes

Next, we declare two classes. A class is a set of individuals with shared
characteristics. The basic template creates an entirely useless HelloWorld

task for us like so:

(defclass HelloWorld)

This follows the same syntax as all forms with ( and ), and follows
the convention of defontology – a class object is created as well as a name
HelloWorld which we can use to refer to that object. In this case, we do not
add any arguments nor do we need to. If you are using nightlight, it should
look like this:

It is possible to run, or evaluate, Tawny-OWL files as well. To see this
in nightlight, simply select “Insta-REPL” on the top-right.

On the left, we can see the results of this evaluation. The actual values
are not that useful in Tawny-OWL, but the that they are green shows that
they are valid.

Clearly, as this is supposed to be an ontology of pizza rather than clas-
sic computer programs, we will need to change this. So, first we replace
HelloWorld with Pizza and add a new class called PizzaComponent. As with
our defontology form, have a def form; however, in this case, we do not use

3In Tawny-OWL, this requirement is weakened – if you do not put an IRI, Tawny-OWL
invents one for you. This is okay if you are experiments, but should be changed when you
publish an ontology.
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Figure 5.1: A new pizza ontology

Figure 5.2: The Insta-REPL
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any arguments. The semantics of these two statements are that, there is a
class called Pizza and another called PizzaComponent which individuals may
be members of. However, we know nothing at all about the relationship
between an individual Pizza and an individual PizzaComponent4.

(defclass Pizza)

(defclass PizzaComponent)

To build an accurate ontology, we may wish to describe this relationship
further. We might ask the question, can an individual be both a Pizza and
a PizzaComponent at the same time. The answer to this is no, but currently
our ontology does not state this. In OWL terminology, we wish to say that
these two classes are disjoint. We can achieve this by adding an as-disjoint

statement.

(as-disjoint Pizza PizzaComponent)

This works well, but is a little duplicative. If we add a new class which
we wish to also be disjoint, it must be added in two places. Instead, it is
possible to do both at once. This has the advantage of grouping the two
classes together in the file, as well as semantically, which should make the
source more future-proof; should we need new classes, we will automatically
become disjoint as required.

(as-disjoint

(defclass Pizza)

(defclass PizzaComponent ))

If you are using Nightlight, you may find it a little hard to edit your
file to achieve this as Nightlight uses parinfer. This puts the parentheses in
place for you. To make this statement, type as-disjoint before the other
two forms:

(as-disjoint)

(defclass Pizza)

(defclass PizzaComponent)

Now, add two spaces in front of defclass Pizza) and then ( defclass PizzaComponent).
The parentheses should take care of themselves.

(as-disjoint

(defclass Pizza

4In this ontology, we use a naming scheme using CamelCase, upper case names for
classes and, later, lower case properties. As with many parts of ontology development,
opinions differ as to whether this is good. With Tawny-OWL it has the fortuitous advan-
tage that it syntax highlights nicely, because it looks like Java class names.

http://shaunlebron.github.io/parinfer/
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:label "Pizza"

:comment "A type of prepared food, originating from Italy, consisting of a

flatbread with any of a large variety of other foods on top.")

(defclass PizzaComponent

:label "Pizza Component"

:comment "Food that is part of a pizza."))

The semantics of these statements are that our ontology may have any
number of individuals, some of which may be Pizza, some of which may be
PizzaComponent, but none of which can be both Pizza and PizzaComponent

at the same time. Before we added the as-disjoints statement, we would
have assumed that it was possible to be both. We also add to this two
annotations that can be used to provide more contextualized information
about the pizza – in this case a label and a comment.

As well as describing that two classes are different, we may also wish to
describe that they are closely related, or that they are subclasses. Where
one class is a subclass of another, we are saying that everything that is true
of the superclass is also true of the subclass. Or, in terms of individuals,
that every individual of the subclass is also an individual of the superclass.

Next, we add two more classes, in this case classes for base and toppings.
We include the statement that they have PizzaComponent as a superclass. We
do this by adding a :super argument or frame to our defclass statement.

(defclass PizzaBase

:super PizzaComponent)

(defclass PizzaTopping

:super PizzaComponent)

In Tawny-OWL, the frames can all be read in the same way. Read for-
wards, we can say PizzaBase has a superclass PizzaComponent, or backwards
PizzaComponent is a superclass of PizzaBase. Earlier, we say the :iri frame
for defontology which is read similarly – pizza has the given IRI.

As every individual of, for example, PizzaBase is PizzaComponent, and
no PizzaComponent individual can also be a Pizza this also implies that no
PizzaBase is a Pizza. In otherwords, the disjointness is inherited.

As with the disjoint statement, this is little long winded; we have to
name the PizzaComponent superclass twice. Tawny-OWL provides a short
cut for this, with the as-subclasses function.

(as-subclasses

PizzaComponent

(defclass PizzaBase)

(defclass PizzaTopping ))
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We are still not complete; we asked the question previously, can you
be both a Pizza and a PizzaComponent, to which the answer is no. We
can apply the same question, and get the same answer to a PizzaBase and
PizzaTopping. These two, therefore, should also be disjoint. However, we
can make a stronger statement still. The only kind of PizzaComponent

that there are either a PizzaBase or a PizzaTopping. We say that the
PizzaComponent class is covered by its two subclasses5. We can add both
of these statements to the ontology also.

(as-subclasses

PizzaComponent

:disjoint :cover

(defclass PizzaBase)

(defclass PizzaTopping ))

We now have the basic classes that we need to describe a pizza.

5.5 Properties

Now, we wish to describe more about Pizza; in particular, we want to say
more about the relationship between Pizza and two PizzaComponent classes.
OWL provides a rich mechanism for describing relationships between indi-
viduals and, in turn, how individuals of classes are related to each other. As
well as there being many different types of individuals, there can be many
different types of relationships. It is the relationships to other classes or
individuals that allow us to describe classes, and it is for this reason that
the different types of relationships are called properties.

A Pizza is built from one or more PizzaComponent individuals; we first de-
fine two properties 6 to relate these two together, which we call hasComponent
and isComponentOf. The semantics of this statement is to say that we now
have two properties that we can use between individuals.

As with classes, there is more that we can say about these properties. In
this case, the properties are natual opposites or inverses of each other. The
semantics of this statement is that for an individual i which hasComponent

j, we can say that j isComponentOf i also.

(as-inverse

5For those from an OWL background, you may have noticed that “covering” is not
part of the OWL standard; in fact, it’s a pattern that is frequently used. The semantics
are that PizzaComponent is equivalent to PizzaBase or PizzaTopping

6Actually, two object properties, hence defoproperty. We can also define data proper-
ties, which we will see later



32 CHAPTER 5. THE PIZZA ONTOLOGY

(defoproperty hasComponent)

(defoproperty isComponentOf ))

The semantics here are actually between individuals, rather than classes.
This has an important consequence with the inverses. We might make the
statement that Pizza hasComponent PizzaComponent, but this does not allow
us to infer that PizzaComponent isComponentOf Pizza. The way that we
have named our classes for pizzas, this might be unintuitive. Consider bikes
instead: just because all bicycles have wheels, we can not assume that all
wheels are parts of a bike; we can assume that where a bike has a wheel,
that wheel is part of a bike. This form of semantics is quite subtle, and is
an example of where statements made in OWL are saying less than most
people would assume 7.

We now move on to describe the relationships between Pizza and both
of PizzaBase and PizzaTopping. For this, we will introduce three new parts
of OWL: subproperties, domain and range constraints and property charac-
teristics, which we define in Tawny-OWL as follows:

(defoproperty hasTopping

:super hasComponent

:range PizzaTopping

:domain Pizza)

(defoproperty hasBase

:super hasComponent

:characteristic :functional

:range PizzaBase

:domain Pizza)

First, we consider sub-properties, which are fairly analogous to sub-
classes. For example, if two individuals i and j are related so that i hasTopping j,
then it is also true that i hasComponent j.

Domain and range constraints describe the kind of entity that be at
either end of the property. So, for example, considering hasTopping, we say
that the domain is Pizza, so only instances of Pizza can have a topping,
while the range is PizzaTopping so only instances of PizzaTopping can be a
topping.

Finally, we introduce a characteristic. OWL has quite a few different
characteristics which will introduce over time; in this case functional means
means that there can be only one of these, so an individual has only a single

7We will see examples of the opposite also — statements which are stronger in OWL
than the intuitive interpretation
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base. We do not make the same statement about toppings, so by default,
OWL will assume that you can have any number of toppings on a pizza.

5.6 Populating the Ontology

We now have enough expressivity to describe quite a lot about pizzas. So,
we can now set about creating a larger set of toppings for our pizzas. First,
we describe some top level categories of types of topping. As before, we use
as-subclasses function and state further that all of these classes are disjoint.
Here, we have not used the :cover option. This is deliberate, because we
cannot be sure that these classes describe all of the different toppings we
might have; there might be toppings which fall into none of these categories8.

(as-subclasses

PizzaTopping

:disjoint

(defclass CheeseTopping)

(defclass FishTopping)

(defclass FruitTopping)

(defclass HerbSpiceTopping)

(defclass MeatTopping)

(defclass NutTopping)

(defclass SauceTopping)

(defclass VegetableTopping ))

When defining a large number of classes at once, Tawny-OWL also offers
a shortcut, which is declare-classes. While this can be useful in a few
specific circumstances, these are quite limited because it does not allow
addition of any other attributes at the same time, and in particular labels
which most classes will need. It is quite useful in tutorial document.

(as-subclasses

CheeseTopping

:disjoint

(declare-classes

GoatsCheeseTopping

GorgonzolaTopping

MozzarellaTopping

ParmesanTopping ))

8For example, we leave open the option of a pizza base with nutella on it; it’s not clear
whether this is a pizza or not, but if we did decide one way or another, it would be possible
to describe this clearly and explicitly in OWL.
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A similar, if slightly longer-winded, way of defining many classes at once
is defclassn. We use this to define vegetables.

(as-subclasses

VegetableTopping

:disjoint

(defclassn

[PepperTopping

:label "Pepper Topping"]

[GarlicTopping

:label "Garlic Topping"]

[PetitPoisTopping]

[AsparagusTopping]

[TomatoTopping]

[ChilliPepperTopping ]))

We add classes describing meat.

(as-subclasses

MeatTopping

:disjoint

(defclass HamTopping)

(defclass PepperoniTopping ))

And, finally, fruit.

(as-subclasses

FruitTopping

(defclass PineappleTopping ))

In this case, we have only a single entity, that is PineappleTopping, so
we have not made this disjoint. In fact, Tawny-OWL would treat this as an
error, since having a single disjoint class does not really make sense, and it
is mostly likely it is wrong. This does mean that we need to remember to
add this :disjoint statement, if another FruitTopping is added.

5.7 Describing a Pizza

And, now finally, we have the basic concepts that we need to build a pizza.
First, we start off with a generic description of a pizza; we have already
defined the class above, so we want to extend the definition rather than
create a new one. We can achieve this using the class function:

(owl-class Pizza

:super
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(owl-some hasTopping PizzaTopping)

(owl-some hasBase PizzaBase ))

This introduces several new features of Tawny-OWL:

• this use of class requires that Pizza already be defined. In other
words, we are extending an existing definition. If Pizza is not defined,
this form will crash.

• a new function some

• we create out first unnamed classes from a class expression – in this
case (owl-some hasTopping PizzaTopping).

The semantics of the last two of these are a little complex. Like a named
class (all of those we have seen up to now), an unnamed class defines a
set of individuals, but it does so by combining other parts of the ontology.
The owl-some restriction describes a class of individuals with at least one
relationship of a particular type. So (owl-some hasTopping PizzaTopping)

describes the set of all individuals related by the hasTopping relationship
to at least one PizzaTopping. Or alternatively, each Pizza must have a
PizzaTopping. Or, alternatively again, for each Pizza there must exist one
PizzaTopping; it is for this reason that this form of class is also known as an
existential restriction.

We combine the two statements to say that a Pizza must have at least
one base and at least one topping. Actually, we earlier defined hasBase with
the :functional characteristic, so together this says that a Pizza must have
exactly one base.

Finally, we can build a specific pizza, and we start with one of the sim-
plest pizza, that is the margherita. This has two toppings, mozzarella and
tomato. The definition for this is as follows:

(defclass MargheritaPizza

:super

Pizza

(owl-some hasTopping MozzarellaTopping)

(owl-some hasTopping TomatoTopping)

(only hasTopping (owl-or MozzarellaTopping TomatoTopping )))

The first part of this definition is similar to Pizza. It says that a
MargheritaPizza is a Pizza with two toppings, mozzarella and tomato. The
second part of the definition adds two new features of Tawny-OWL:

• only a new function which returns a universal restriction
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• owl-or which returns a union restriction

The owl-or statement defines the set of individuals that is either MozzarellaTopping
or TomatoTopping. The only statement defines the set of individuals whose
toppings are either MozzarellaTopping or TomatoTopping. One important
sting in the tail of only is that it does NOT state that these individuals
have any toppings at all. So (only hasTopping MozzarellaTopping) would
cover a Pizza with only MozzarellaTopping, but also many other things, in-
cluding things which are not Pizza at all. Logically, this makes sense, but
it is counter-intuitive 9.

For completeness, we also define HawaiianPizza 10.

(defclass HawaiianPizza

:super

Pizza

(owl-some hasTopping MozzarellaTopping)

(owl-some hasTopping TomatoTopping)

(owl-some hasTopping HamTopping)

(owl-some hasTopping PineappleTopping)

(only hasTopping

(owl-or MozzarellaTopping TomatoTopping HamTopping PineappleTopping )))

We can now check that this works as expected by using the subclass?

and subclasses functions at the REPL.

take.wing.pizza> (subclass? Pizza MargheritaPizza)

true

take.wing.pizza> (subclasses Pizza)

#{#[Class 0x74c8b756 "HawaiianPizza"@en] #[Class 0x4f1495bd "MargheritaPizza"@en]}

5.8 A simple pattern

The last definition is rather unsatisfying for two reasons. Firstly, the mul-
tiple uses of (owl-some hasTopping) and secondly because the toppings are
duplicated between the universal and existential restrictions. Two features
of Tawny-OWL enable us to work around these problems.

Firstly, the owl-some function has a special property – it broadcasts.
This means it can take a single property but any number of classes; this is

9Except to logicians, obviously, to whom it all makes perfect sense.
10Pizza names are, sadly, not standardized between countries or resturants, so I’ve

picked on which is quite widely known. Apologies to any Italian readers for this and any
other culinary disasters which this book implies really are pizza.
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equivalent to multiple calls to the owl-some with a single class. We use this
feature to shorten the definition of AmericanPizza.

(defclass AmericanPizza

:super

Pizza

(owl-some hasTopping MozzarellaTopping

TomatoTopping PepperoniTopping)

(only hasTopping (owl-or MozzarellaTopping TomatoTopping PepperoniTopping )))

The single owl-some function call here expands to three existential re-
strictions, each of which becomes a super class of AmericanPizza – mirroring
the definition of HawaiianPizza.

This definition, however, still leaves the duplication between the two sets
of restrictions. This pattern is frequent enough that Tawny-OWL provides
special support for it in the form of the some-only function, which we use
to define the next pizza.

(defclass AmericanHotPizza

:super

Pizza

(some-only hasTopping MozzarellaTopping TomatoTopping

PepperoniTopping ChilliPepperTopping ))

The some-only function is Tawny-OWL’s implementation of the closure
axiom. Similarly, the use of :cover described earlier implements the covering
axiom. These are the only two patterns which are directly supported by
the core of Tawny-OWL (i.e. the namespace tawny.owl). In later sections,
though, we will see how to exploit the programmatic nature of Tawny-OWL
to build arbitrary new patterns for yourself.

5.9 Defined Classes

So far all of the classes that we have written are primitive. This is not a
statement about their complexity. It means that as they stand, they cannot
be used to infer new facts. So, for example, we know that a individual
MargheritaPizza will have a MozzarellaTopping and a TomatoTopping, but
given an arbitrary pizza we cannot determine whether it is a margherita.
Or, mozzarella and tomato toppings are necessary for a margherita, but
they are not sufficient.

Defined classes allow us to take advantage of the power of computational
reasoning. Let us try a simple example:

(defclass VegetarianPizza
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:equivalent

(owl-and Pizza

(only hasTopping

(owl-not (owl-or MeatTopping FishTopping )))))

Here, we define a VegetarianPizza as a Pizza with only MeatTopping or
FishTopping. The two key point about this definition is that we have marked
it as :equivalent rather than :super and that there is no stated relationship
between VegetarianPizza and MargheritaPizza. We can confirm this at the
shell.

(subclasses VegetarianPizza)

=> #{}

(subclass? VegetarianPizza MargheritaPizza)

=> false

However, now let us ask the same question of a reasoner. You may re-
member that earlier we added tawny.reasoner to our namespace form. This
now allows us to perform computational reasoning. First, we choose a rea-
soner to use (in this case HermiT); we do this by calling the reasoner-factory
function; this is in the tawny.reasoner namespace, which we can call by the
short-cut name r.

(r/reasoner-factory :hermit)

=> #object[org.semanticweb.HermiT.Reasoner$ReasonerFactory 0x7d56d721 "org.semanticweb.HermiT.Reasoner$ReasonerFactory@7d56d721"]

Then ask the same questions of Tawny-OWL but now using the versions
of functions prefixed with an i (for inferred).

(r/isubclasses VegetarianPizza)

=> #{#[Class 0x6487d60d "MargheritaPizza"@en]}

(r/isubclass? VegetarianPizza MargheritaPizza)

=> true

Now, we see a different result. A MargheritaPizza is a subclass of
VegetarianPizza, even those we have never stated this explicitly. The rea-
soner can infer this using the following chain of logic:

• MargheritaPizza has only MozzarellaTopping or TomatoTopping

• MozzarellaTopping is a CheeseTopping

• TomatoTopping is a VegetableTopping
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• CheeseTopping is disjoint from MeatTopping and FishTopping

• Likewise, TomatoTopping is not a MeatTopping or FishTopping

• Therefore, MargheritaPizza has only toppings which are not MeatTopping
or FishTopping.

• A VegetarianPizza is any Pizza which has only toppings which are not
MeatTopping or FishTopping.

• So, a MargheritaPizza is a VegetarianPizza.

Even for this example, the chain of logic that we need to draw our
inference is quite long. The version of the pizza ontology presented here is
quite small, so while we can follow and reproduce this inference easily by
hand. For a larger ontology it would be a lot harder, especially, when we
start to make greater use of the expressivity of OWL.

Many of the statements that we have made about pizza are needed to
make this inference. For example, if we had not added :disjoint: to the
subclasses of PizzaTopping, we could not make this inference; even though we
would know that, for example, a MozzarellaTopping was a CheeseTopping;
by default, the reasoner would not assume that CheeseTopping was not a
MeatTopping, since these two could overlap. There are also some statements
in the ontology that we do not use to make this inference. For example,
the reasoner does not need to know that a MargheritaPizza actually has
a MozzarellaTopping (the statement (some hasTopping MozzarellaTopping),
just that if the pizza has toppings at all, they are only mozzarella or tomato.
The semantics of OWL can be subtle, but allow us to draw extremely pow-
erful conclusions.

5.10 Recap

In this chapter, we have described:

• The basic syntax of Tawny-OWL

• New ontologies are created with defontology

• Ontologies consist of classes and properties

• Classes describe a set of individuals

• Properties describe relationships between individuals
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• Defined classes allow us to make inferences using comptutational rea-
soning.

In addition, we have introduced the following semantic statements:

• Subclass relationships

• Disjoint classes

• Covering axioms

• Inverse properties

• Domain and range constraints

• Functional characteristics

• some and only restrictions, and the some-only pattern

• or and not restrictions



Chapter 6

Highly Patterned Ontologies

Many ontologies contain patterns—that is collections of classes and prop-
erties which occur repetitive through the ontology. Dealing with this in
many ontology development environments is painful. Tawny-OWL is a fully
programmatic environment, however. Patterns are dealt with by writing
functions and passing parameters; in otherwords, the same way that we
deal with code duplication more generally.

In this Chapter, we will first explore how to use patterns than Tawny-
OWL provides explicit support for; then we will move on to show how to
modify and extend these patterns in an ontology specific way. Finally, we
will show how to use the fully programmatic capabilies of Tawny-OWL to
generate a large number of classes in a way that is unique to one ontology.

6.1 Dealing with Patterns

Some ontologies have very few patterns; all the classes and objects are
unique. These ontologies tend to be very small, however. Most ontolo-
gies describe many similar things with just a few details differing between
them. In this chapter, we use the amino-acid ontology – this describes the
chemical constituants that make up proteins. There are twenty of these and
they are all very similar, with the same properties.

Graphical tools can provide a partial solution to this problem, by sup-
porting the building of these patterns. For instance, Protege had “wizards”
to build various patterns. In fact, the first version of the amino-acid on-
tology was built to demonstrate one of these patterns [?]. This requires
extension of the editor for every new pattern, which is acceptable for some
generic patterns which can be widely reused, but works badly for patterns
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with a narrow scope.

An alternative is to use a language like OPPL [?], which can directly
specify patterns and transformations to ontologies. However, this requires
the use of two syntaxes or environments – one for “normal” ontological
code, and one for patternised. It also presents a maintainence problem –
the normal and patternised code is intertwinned, so updating a pattern is
difficult.

Tawny-OWL take an alternative approach. Instead of providing an al-
ternative language like OPPL, all ontological statements are written in Clo-
jure, which is, itself, an full programming languages. Patterns can be built
straight-forwardly by writing or using functions; this can be done in a general
library for generic patterns, shared between ontologies. Or, alternatively, it
can be done specifically for individual ontologies, in the same syntax, files
and development environment as the normal parts. Updates cease to be a
problem; in the worst case scenario, this requires restarting the clojure pro-
cess. Normally, it does not require even that. In short, with Tawny-OWL
patterns become an integral part of ontology development, rather than an
external imposition.

In this chapter, we first describe how to use an pre-existing pattern
provided by Tawny-OWL, then how to modify this slightly for the amino-
acid ontology. Finally, we show how to create a de novo patternised section
creating several hundred defined classes.

6.2 Creating the Amino Acid Ontology

First, we start with a namespace declaration. This is slightly different from
ones used before, as it also requires two new namespaces. tawny.pattern

provides pattern support and one key pattern which forms the core of the
amino-acid ontology; clojure.string provides string maninpulation capa-
bilities which we will use. We also define the new ontology.

(ns take.wing.amino-acid

(:import [org.semanticweb.owlapi.search EntitySearcher ])

(:require

[clojure.string]

[tawny.owl :refer :all]

[tawny.pattern :as p]

[tawny.reasoner :as r]

[tawny.util :as u]))

(defontology aao
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:iri "http://www.purl.org/ontolink/aao")

First, to explain the domain. Proteins are polymers made up from
amino-acid monomers. They consist of a central carbon atom, attached to
a carboxyl group (the “acid” amino) and amine group (the “amino” group)
a hydrogen and an R group. The R group defines the different amino acids.
The different R groups have different phyiscal or chemical properties, such
as their degree of hydrophobicity. We call these different characteristics
RefiningFeatures.

(defclass AminoAcid)

(defclass RefiningFeature)

(defclass PhysicoChemicalProperty :super RefiningFeature)

There are a number of different ways of measuring hydrophobicity; in
reality, it is a continuous property rather than a discrete one, but these are
hard to model ontologically. One simple solution to this problem is the value
partition – we just pick a set of discrete values into which we partition the
range. It is the same trick that is used to describe the colours of the rainbow;
we force a continuous range into seven colours. Hydrophobicity splits into
just two – hydrophobic and hydrophilic.

The full representation of this knowledge as a value parition is fairly
complex. First, we define a root class and an object property, with an
appropriate domain and range, and declared functional, as one object can
be hydrophilic or hydrophobic but not both.

(defclass Hydrophobicity :super PhysicoChemicalProperty)

(defoproperty hasHydrophobicity :domain AminoAcid

:range Hydrophobicity :characteristic :functional)

Next we need to define the partition values. We make Hydrophilic

disjoint from Hydrophobic. We do not make Hydrophobic disjoint from
Hydrophillic because of Tawny-OWLs “define before use” semantics.

(defclass Hydrophobic :super Hydrophobicity)

(defclass Hydrophilic :super Hydrophobicity :disjoint Hydrophobic)

Finally, we refine the first partition Hydrophobic to also be disjoint with
Hydrophilic and then add a covering axioms to Hydrophobicity.

(refine Hydrophobic

:disjoint Hydrophilic)

(refine Hydrophobicity

:equivalent (object-or Hydrophilic Hydrophobic ))
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Of course, as we have already seen, the use of disjoints and covering
axioms is so common that Tawny-OWL provides specific support for adding
these, in a way which also allows us to avoid the necessity for refining classes
after creation. This produces a much neater definition and is a simple ex-
ample of the use of patterns.

(as-subclasses

(defclass Hydrophobicity :super PhysicoChemicalProperty)

:disjoint :cover

(defclass Hydrophobic)

(defclass Hydrophilic ))

(defoproperty hasHydrophobicity :domain AminoAcid

:range Hydrophobicity :characteristic :functional ))

This is, however, all still fairly long-winded and relatively easy to get
wrong. Tawny-OWL, however, allows us to go further with the use of the
defpartition macro, which allows specification of all the appropriate values
at once. It will produce the same axioms as the statements above.

(p/defpartition Hydrophobicity

[Hydrophobic Hydrophilic]

:comment "The tendency to associate with water."

:super PhysicoChemicalProperty

:domain AminoAcid)

defpartition is a generic pattern and is not specific at all to the amino-
acid ontology. It will serve well, but for the amino-acid ontology we need
to define a series of further value partitions. They all have the same super
class and domain. It would be nice to create a localised pattern which
hard-codes these values. As defpartition is a macro this is slightly more
complex than a normal function, but not heavily so. This macro is unlikely
to be of use in another ontology because of these hard-coded values, but it
is valuable because it saves typing here and safe-guards us against future
changes. Being in the same environment, it is easy to do, so we might as
well!

(defmacro defaapartition [& body]

‘(p/defpartition

~@body :super PhysicoChemicalProperty

:domain AminoAcid ))

The next value partition is as a result somewhat smaller, as it no longer
needs to describe the super class and domain. The size value partition is
self-explanatory enough; this could be described in relation to a continuous
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physical measurement (such as size in Daltons), but this is not necessary
here.

(defaapartition Size

[Small Tiny Large]

:comment "The physical size of the amino acid.")

Finally, we create three more value partitions describing Charge, SideChainStructure
and Polarity.

(defaapartition Charge

[Negative Neutral Positive]

:comment "The charge of an amino acid.")

(defaapartition SideChainStructure

[Aliphatic Aromatic]

:comment "Does the side chain contain rings or not?")

(defaapartition Polarity

[Polar NonPolar]

:comment "The polarity across the amino acid.")

Next, we define a set of annotation properties. In the previous Chap-
ter 5, we made some use of a few annotation properties: the label and the
comment. But, in OWL, annotation properties are generic. It is possible
to define new annotation properties. This is useful here because amino-
acids have a long name, such as Alanine, and two shorter names – a three
letter abbreviation such as Ala and finally one letter abbreviation which is
shorter, but harder to remember, in this case A. These abbreviations are
standardized and widely used, so worth describing here.

;; annotation properties

(defaproperty hasLongName)

(defaproperty hasShortName)

(defaproperty hasSingleLetterName)

Now, we move onto the heart of this amino-acid ontology which is the
function which defines a single amino-acid. This is a fairly large definition,
but it is fairly repetitive in itself. First we start with the function definition,
combined with a few small pre-conditions; these are probably unnecessary
in this case, for reasons we will see soon.

(defn amino-acid

"Define a new amino acid. Names is a vector with the long, three letter and

single amino acid version. Properties are the five value partitions for each

aa, as a list."

[names properties]
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{:pre [(= 3 (count names ))

(= 5 (count properties ))]}

The main part of the amino acid pattern is defined in the next section.
The pattern is not that complex – we simply give an amino-acid five prop-
erties and three names. However, to achieve this, we use a new feature of
Tawny-OWL: the gem and the facet.

The defpartition macro that we saw earlier creates a large number of
different classes and a property associated with them. In addition to these
logical statements it also defines a facet which comprises the facet values
(i.e. the classes) and the facet property ; this knowledge is stored in the
ontology as annotations and states that the facet values should normally be
associated with this property.

This allows us to use the facet function which returns much the same
as owl-some.

(=

(owl-some hasSideChainStructure Aliphatic)

(facet Aliphatic ))

This is a minor convienience, of course, when lots of facet values are
being used at once is a big advantage. As with owl-some, the facet function
broadcasts – we can call it with as many arguments as we choose.

(=

(list

(owl-some hasCharge Neutral)

(owl-some hasHydrophobicity Hydrophobic)

(owl-some hasPolarity NonPolar)

(owl-some hasSideChainStructure Aliphatic)

(owl-some hasSize Small ))

(facet Neutral Hydrophobic NonPolar Aliphatic Small ))

Not only has the hassle of typing been reduced but so has the risk of
error. It is no longer possible to use the wrong property with the wrong
class.

The gem functions build on top of this idea; these are similar the class

or defclass functions described earlier, but add a new frame, that of the
facet. For example, we could define the amino-acid Valine as follows:

(defgem Valine

:facet Neutral Hydrophobic NonPolar Aliphatic Small)

In the case of the amino-acid function, instead we use the gem function
and capture its return value as part of a let block. This is not strictly
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necessary as the return value is used only once, but in this case, I think, it
increases readability.

(let [aa (p/gem (first names)

:super AminoAcid

:facet properties

:label (first names)

:annotation

(annotation hasLongName (nth names 0))

(annotation hasShortName (nth names 1))

(annotation hasSingleLetterName (nth names 2)))]

The last part is not part of the pattern itself. Rather it adds support for
interning ; this is the process by which OWL objects are bound to Clojure
symbols. The practical upshot of this is that we (or anyone importing the
amino acid ontology) will be able to refer to amino acids using names like
Alanine rather than being required to use strings inside quotes — "Alanine".
This adds (considerable) complexity to the Tawny-OWL definition of the
amino-acid ontology, but is probably worth it for ease of downstream use.

To achieve this, we need to return instances of the tawny.pattern.Named

class, combined with the strings we use to refer to them. In this case, a
single amino-acid class gets three names – this is rather unusual but makes
sense here.

;; and return types for intern

(map p/->Named

names

(repeat aa))))

We could stop here in terms of generating our ontology. However, here
we take two more steps, one mostly to make the input more consistent, so
that we would see errors easily, and one to make the amino-acid ontology
more usuable within the Tawny-OWL environment.

Firstly, we define a function which takes a number of different amino-
acid definitions and runs the amino-acid function over them. It then flattens
the list of lists that is returned.

(defn amino-acids

[& definitions]

(apply

concat

(map

(fn [[ names props]] (amino-acid names props ))

(partition 2 definitions ))))
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Finally, we define a macro. This does two things for us. Firstly it
provides the convienience of using “bear” words: so Alanine instead of
"Alanine" within the macro itself. A small convienience for a single amino-
acid, but a bigger one for all twenty. There are a variety of ways of achieving
this – we could use the tawny.util/quote-tree macro to covert all the sym-
bols to strings. However, here, we take the slightly more complex route and
just turn the first part of the definition into strings. The rest can remain
symbols as they are pre-defined. And, secondly, we intern the Named val-
ues turned from the amino-acid function; that is we create a new variable,
identified by relevant symbol, with a value which is an OWL entity. The
practical upshort of this is that later, we can refer to Alanine (or Ala or
A) rather than having to use quotes. In terms of the amino-acid ontology
itself, this is unnecessary, but it is useful for another ontology importing
the amino-acid ontology, so it is worth doing here. In addition and proba-
bly more importantly than the convienience, this also provides a degree of
safety: attempts, for instance, refering to an amino-acid B will fail with an
error as this amino-acid does not exist.

(defmacro defaminoacids

[& definitions]

(let [definitions

(interleave

(map

#(mapv name %)

(take-nth 2 definitions ))

(take-nth 2 (rest definitions )))]

‘(p/intern-owl-entities

(amino-acids ~@definitions ))))

Then, we define all the amino-acid. These have been laid out in alpha-
betical order, and the properties arranged in a table which means that we
can visually check that everything is correct and nothing is missing.

(defaminoacids

[Alanine Ala A] [Neutral Hydrophobic NonPolar Aliphatic Tiny]

[Arginine Arg R] [Positive Hydrophilic Polar Aliphatic Large]

[Asparagine Asn N] [Neutral Hydrophilic Polar Aliphatic Small]

[Aspartate Asp D] [Negative Hydrophilic Polar Aliphatic Small]

[Cysteine Cys C] [Neutral Hydrophobic Polar Aliphatic Small]

[Glutamate Glu E] [Negative Hydrophilic Polar Aliphatic Small]

[Glutamine Gln Q] [Neutral Hydrophilic Polar Aliphatic Large]

[Glycine Gly G] [Neutral Hydrophobic NonPolar Aliphatic Tiny]

[Histidine His H] [Positive Hydrophilic Polar Aromatic

Large]



6.3. DEFINING THE AMINO ACIDS 49

[Isoleucine Ile I] [Neutral Hydrophobic NonPolar Aliphatic Large]

[Leucine Leu L] [Neutral Hydrophobic NonPolar Aliphatic Large]

[Lysine Lys K] [Positive Hydrophilic Polar Aliphatic Large]

[Methionine Met M] [Neutral Hydrophobic NonPolar Aliphatic Large]

[Phenylalanine Phe F] [Neutral Hydrophobic NonPolar Aromatic

Large]

[Proline Pro P] [Neutral Hydrophobic NonPolar Aliphatic Small]

[Serine Ser S] [Neutral Hydrophilic Polar Aliphatic Tiny]

[Threonine Thr T] [Neutral Hydrophilic Polar Aliphatic Tiny]

[Tryptophan Trp W] [Neutral Hydrophobic NonPolar Aromatic

Large]

[Tyrosine Try Y] [Neutral Hydrophobic Polar Aromatic

Large]

[Valine Val V] [Neutral Hydrophobic NonPolar Aliphatic Small]

)

Finally, we clean up by ensuring that all aminoc-acids are disjoint from
each other. We could do this earlier in the amino-acids function, but as this
function only needs to be run once, it makes little difference.

(apply as-disjoint (subclasses AminoAcid ))

6.3 Defining the Amino Acids

We saw earlier, while consider pizza, that it is possible to create defined
classes (see Section 5.9). For the amino-acid ontology, this is also tremen-
dously useful because we can effectively use this to query it. Consider, for
example, this definition of LargeAminoAcid.

(defclass LargeAminoAcid

:equivalent (owl-some hasSize Large ))

This is fine, of course, but is also very slow, as there are a lot of potential
classes that we could create. As well as one for each of the twelve values
in our five value partitions, we also need all of the permutations of these,
which makes quite a few classes.

Of course, being fully programmatic, calculating permutations in Tawny-
OWL is a simple enough task; so, why not build all of these defined classes
programmatically?

This is reasonably straight-forward; first, we need a definition for a de-
fined class; this will take a list of partition values. The pattern simply
involves making existential (owl-some) restrictions to all of the partition val-
ues using the appropriate object property; we can achieve this using the
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facet function that we saw earlier. We form the name of the class from the
names of the partition values.

(defn amino-acid-def [partition-values]

(let [name

(str

(clojure.string/join

(map

#(. getFragment

(. getIRI %))

partition-values ))

"AminoAcid")

exist (p/facet partition-values )]

Then finally we create the class and package it with its name. As with
our previous amino-acid definition, this function has a return value which
would allow it to be used to intern the classes created, although we do not
actually use that facility here.

(p/->Named

name

(owl-class

name

:label name

:equivalent

(owl-and AminoAcid exist )))))

Calculating a cartesian product is relatively easy in Clojure using the
swiss-army knife for list comprehension.

(defn cart [colls]

(if (empty? colls)

’(())

(for [x (first colls)

more (cart (rest colls ))]

(cons x more ))))

We combine all of these together to create all of the defined classes.

;; build the classes

(doall

(map

amino-acid-def

;; kill the empty list

(rest

(map

#( filter identity %)

;; combination of all of them
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(cart

;; list of values for each partitions plus nil

(map

#(cons nil (seq (direct-subclasses %)))

;; all our partitions

(seq (direct-subclasses PhysicoChemicalProperty ))))))))

Finally, we check to see whether everything has worked. For this, we
will need to use a reasoner, so first we choose a reasoner and check the
consistency of our ontology.

(r/reasoner-factory :hermit)

(r/consistent?)

We can also investigate the classes that we have created. None of the
created classes should have any asserted subclasses, which we can check, by
looking at one.

(subclasses

(owl-class "SmallAminoAcid"))

However, we see a totally different picture with the reasoner. We can
first check for inferred subclasses.

(r/isubclasses

(owl-class "SmallAminoAcid"))

We might have expected to just see a few as there are only 20 amino-
acids, but actually, there are 113 of them. The reason for this is that the
reasoner determines the subclass relationships between the defined classes as
well as with the named amino-acids: so, for instance, an HydrophobicSmallAminoAcid

is necessarily also a SmallAminoAcid so appears as a subclass. This demon-
strates the power of using a computational reasoner; while the conclusions
that it reaches are not, in this case, difficult to calculate by hand, with so
many classes they would be laborious.

Unfortunately, in this case, they also hide the answer that we are really
interested in. In a less programmatic tool, we would be stuck, but this is
not a problem in Tawny-OWL; we just filter the defined classes from the
result as follows.

(filter

#(not (EntitySearcher/isDefined % aao))

(r/isubclasses

(owl-class "SmallAminoAcid")))

;; => (#[ Class 0x6f148b89 "Valine"@en] #[ Class 0x4c949f3e "Proline"@en]

;; #[ Class 0x57f95b76 "Glutamate"@en] #[ Class 0x784dcd0 "Asparagine"@en]

;; #[ Class 0x4c07576a "Aspartate"@en] #[ Class 0x24024cbb "Cysteine"@en])
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And the end result? There are six small amino-acids!
With Tawny-OWL it is straight-forward to implement new patterns

building a very large number of classes at once; the amino acid ontology
is a nice example of this. At the current time, we do not really know how
common the requirement is for this sort of ontology; most ontologies in ex-
istance are not heavily patternized. But, then, perhaps this is part because
the tools for generating patterns were not integrated into our ontology de-
velopment process; patternized ontologies are not common because they are
just too painful to produce.

Even aside from heavily patternized ontologies, this chapter also shows
that Tawny-OWL can be easily extended even within the scope of a single
ontology. The defaapartition macro is only useful here. But, it is easy
to write, reduces duplication and increases consistency of the end ontology.
Most ontologies have this form of repetition. With Tawny-OWL, managing
this repetition becomes the task of the computer and not the task of the
human, which is as it should be.

6.4 Recap

In this chapter, we have described:

• The tawny.pattern namespace.

• The Value-Partition design pattern

• Gems and Facets

• A macro expanding the value-partition.

• An amino-acid function

• Intern with intern-owl-entities

• A highly patternized part of the ontology.
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More on Pizza

Now that we have considered patterns in the context of amino-acids, we can
look again at Pizza. Our original version of the pizza ontology used few
patterns. Let’s try again. First we create the namespace and ontology.

(ns take.wing.advanced-pizza

(:require [tawny.owl :refer :all]

[tawny.pattern :as p]

[tawny.util :as u]))

(defontology pizza

:iri "http://purl.org/ontolink/advanced-pizza")

Next we create the classes that we need to describe the pizza structure.

(as-disjoint

(defclass Pizza)

(defclass PizzaComponent ))

(as-subclasses

PizzaComponent

:disjoint :cover

(defclass PizzaTopping)

(defclass PizzaBase ))

And the relationships to link them together.

(defoproperty hasComponent)

(defoproperty hasBase

:super hasComponent

:domain Pizza

:range PizzaTopping)

53
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(defoproperty hasTopping

:super hasComponent

:domain Pizza

:range PizzaTopping)

And, finally, we extend the definition of Pizza to include the base and
topping.

(owl-class Pizza

:super (owl-some hasTopping PizzaTopping)

(owl-some hasBase PizzaBase ))

Previously, we started to define our toppings at this point, but let’s
revisit this. In terms of their structure, pizza toppings look rather like the
properties we saw with amino-acids. However, they are not really a value-
partition, since toppings are not a continuous range. Tawny-OWL provides
a pattern for this purpose which is called the tier. The tier is actually a
generalization of the value partition pattern with more options.

We could use the tier like so:

(deftier VegetableTopping

[Artichoke Asparagus Olive]

:function false :cover false :domain Pizza :suffix :Topping

:superproperty hasTopping)

This would create three classes ArtichokeTopping, AsparagusTopping and
OliveTopping, as well as a property hasVegetableTopping. Unlike the value
partition, we do not want this property to be functional, since having more
than one vegetable topping on a pizza is a reasonable thing to do. Similarly,
we do not want to add a covering axiom; there are clearly more vegetable
toppings in the world than the three that we have named.

Now, typing all of this for every type of topping would be painful. So,
let’s create a macro to do it for us. Macros of this form are relatively easy
to create. We start off with the macro name and parameters.

(defmacro deftoppings

[name values ])

Next we add the pattern that we want this to expand to.

(defmacro deftoppings

[name values]

(p/deftier VegetableTopping

[Artichoke Asparagus Olive]

:function false :cover false :domain Pizza :suffix :Topping

:superproperty hasTopping ))
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Now we put a backtick ‘ in front of this form and replace the bits that
we want to parameterize with variables prefixed with ~.

(defmacro deftoppings

[name values]

‘(p/deftier ~name ~values

:suffix :Topping

:functional false

:domain Pizza

:cover false

:superproperty hasTopping ))

Now we can use this to define all of our topping types.

(deftoppings PizzaTopping

[Cheese Fish Fruit HerbSpice Meat Nut Sauce Vegetable ])

We can check that this actually does what we expect in a number of
ways; but let’s use the macroexpand-1 function to see what this will expand
to.

take.wing.advanced-pizza> (macroexpand-1 ’(deftoppings PizzaTopping [Cheese Fish Fruit HerbSpice Meat Nut Sauce Vegetable ]));; take.wing.advanced-pizza> (macroexpand-1 ’(deftoppings PizzaTopping [Cheese Fish Fruit HerbSpice Meat Nut Sauce Vegetable ]))

(tawny.pattern/deftier PizzaTopping [Cheese Fish Fruit HerbSpice Meat Nut Sauce Vegetable] :suffix :Topping :functional false :domain take.wing.advanced-pizza/Pizza :superproperty take.wing.advanced-pizza/hasTopping)

Slightly harder to read, but you should be able to convince yourself that
this is the same as the deftier form that we started with1. We can now
define all our toppings efficiently.

(deftoppings CheeseTopping

[GoatsCheese Gorgonzola Mozzarella Parmesan ])

(deftoppings VegetableTopping

[Pepper Garlic PetitPois Asparagus Tomato ChilliPepper Onion

Peperonata TobascoPepperSauce Caper Olive Rocket ])

(deftoppings MeatTopping

[Ham Pepperoni ])

(deftoppings FruitTopping

[Pineapple Pear])

(deftoppings FishTopping

[Anchovies Prawn ])

We move on now to create our “named pizza” with specific ingredients.
First we create the top-level class.

1Many IDEs have mechanisms for running macroexpand−1 and printing the output
nicely.
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(defclass NamedPizza

:super Pizza)

We could create a similar macro to deftoppings which we would use
multiple times for each pizza. This might look something like this perhaps:

(defpizza MargheritaPizza [MozzarellaTopping TomatoTopping ])

However, we will go a different route, rather like defaminoacid from
Chapter 6. We will create a single macro which allows us to create many
pizza at once.

To achieve this, we need to create a variable number of defclass forms.
The macro to achiev this looks like this:

(defmacro defpizza [& body]

‘(do

~@(map

(fn [[h & r]]

‘(defclass ~h :super

(owl-some hasTopping ~@r)))

body )))

This uses a number of features of Clojure: & body makes this a variadic
function taking any number of parameters; the map function operates over
the list of parameters and calls the fn on them which takes a list also,
breaking it into h & r or head and rest. We call this macro like so.

(defpizza

[MargheritaPizza MozzarellaTopping TomatoTopping]

[CajunPizza MozzarellaTopping OnionTopping PeperonataTopping

PrawnTopping TobascoPepperSauceTopping TomatoTopping]

[CapricciosaPizza AnchoviesTopping MozzarellaTopping

TomatoTopping PeperonataTopping HamTopping CaperTopping

OliveTopping]

[ParmensePizza AsparagusTopping

HamTopping

MozzarellaTopping

ParmesanTopping

TomatoTopping]

[SohoPizza OliveTopping RocketTopping TomatoTopping ParmesanTopping

GarlicTopping ])
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7.1 Recap

In this short chapter, we have described:

• The deftier macro

• Two macros in detail that we can use for the pizza ontology
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Chapter 8

Keeping it in the Family

8.0.1 Introduction

In this Chapter, we will work through an ontology describing a family. This
ontology is freely borrowed from the OWL Primer, but turned into Tawny-
OWL syntax. The point of this ontology is not to build a good model, but
to use pretty much every feature of OWL, so that they can be described. By
the time that we have finished this Chapter, we will have worked through
everything that OWL can do. Later chapters will be on Tawny-OWL func-
tionality alone.

8.1 The Ontology

We start with a namespace declaration. As normal, we require tawny.owl.
However, the rest of the form is a bit different. The first is that we also
require tawny.english. This package is a little unusual in that it brings no
new functionality; it does, however, bring some new names. As we have
seen, tawny.owl contains quite a few names that start with the string “owl”
– so, owl-class, owl-not and so forth. The reason for this is that the sim-
pler names “class” and “not” are already used by Clojure to do something
else, with a different set of functions. tawny.english provides these shorter
names. But this comes with a slight cost; we much make sure that the
Clojure functions no longer use these names, or Clojure will complain. In
this case, we take the simple route and just remove all the default Clojure
functions with refer-clojure – this allows us to say exactly which Clojure
functions we wish to support – in this case :only [] or only the empty list,
iėṅothing.
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(ns take.wing.family

(:refer-clojure :only [])

(:require [tawny.owl :refer :all]

[tawny.english :refer :all ]))

Next, we define the family ontology. This ontology is slightly different
from the ones that we have created before in that the IRI ends with a /.
Tawny-OWL copes with this straight-forwardly; the IRIs of all entities will
be formed after the slash.

(defontology family

:iri "http:// example.com/owl/family/")

We start off with something new. Previously, we introduced object prop-
erties (see Section 5.5). These properties describe a relationship between two
individuals; but OWL also supports another form of property which is the
data property. This draws a relationship between an individual and some
piece of data – a string, a number or so on. At first sight, it looks a bit
similar to an annotation such as a label or a comment, but it is different
because we can reason about it. In this case, we define a new property the
for the National Insurance number1.

(defdproperty hasNIN

:comment "A National Insurance Number")

We next define two classes: Human and Person. We define these as equiva-
lent. They are the same set of individuals and to be a Person is to be a Human.
We can look at these two as being synonyms, although there are, perhaps,
better ways of defining synonyms using annotations which we investigate
later.

The Person class has two other additions. It uses an annotation frame,
with two annotations – one a comment and the other a label with a language
specified (Italian – which probably we should have added to Pizza!). Finally,
Person has a :haskey frame. This states that the national insurance number
uniquely identifies a person.

(as-equivalent

(defclass Human)

(defclass Person

:annotation (comment "Represents the set of all people.")

(label "Personna" "it")

1The OWL Primer from which I borrowed this ontology has a data property called
hasSSN or social security number. But I don’t have one of these which reflects the dangers
of over-generalisation in ontology building
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:haskey hasNIN ))

Next we move to another datatype property. As with object properties
it is possible to add a domain and range to the property. In the case of
domain, this states that the individual with a hasAge property must be a
Person. As this is a datatype property the range is not an individual but
a value which in this case must be a non-negative integer. Finally, you can
have only one age, hence the property is functional.

(defdproperty hasAge

:domain Person

:range :XSD_NON_NEGATIVE_INTEGER

:characteristic :functional)

Next, we define two classes, Man and Woman both of which are subclasses
of Person. These do not cover the superclasses (as there are many people
who are neither a man nor a woman). Additionally, though, we add a new
type of annotation; we want to annotate the statement that a Woman is a
Person. This is neither a comment on Woman nor on Person but strictly on
the relationship between the two – or in OWL terms we are annotating the
axiom. We achieve this using the annotate function.

(as-disjoint

(defclass Man

:super

(annotate Person

(comment "States that every man is a person")))

(defclass Woman

:super

(annotate Person

(comment "States that every woman in a person"))))

We next define a set of properties that demonstrate two new characteris-
tics that is :symmetric and :asymmetric. The hasSpouse property is declare
symmetric because it can be declared in either direction: if a is the spouse
of b then b is also the spouse of a. This is distinctly not true of hasChild –
in fact, it can never be true, so we declare this property asymmetric.

(as-inverse

(defoproperty hasParent)

(defoproperty hasChild

:characteristic :asymmetric ))

(defoproperty hasSpouse

:characteristic :symmetric

:disjoint hasParent)
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The OWL Primer next defines hasWife with the following domain and
range constraints.

(defoproperty hasWife

:super hasSpouse

:domain Man :range Woman)

Interestingly, in the relatively short time since the OWL primer ontology
was first developed, this statement is now a poor reflection of the real world,
so we make this, more limited, statement instead.

(defoproperty hasWife

:super hasSpouse

:range Woman)

Next, we model hasHusband slightly differently, but stating both that it
and its inverse are :functional. This does not require that we explictly de-
fine the inverse – whether it is or not, it will now be functional. Again, there
are some limitations to this modelling; by declaring hasHusband function we
limit this ontology to describing only a point in time rather than a period of
time. This is not unreasonable, since OWL lacks the ability to express “one
at a time”; also, the ontology makes the same assumption elsewhere (with
hasAge for instance).

(defoproperty hasHusband

:super hasSpouse

:range Man

:characteristic :functional

:inversefunctional)

The hasRelative property has yet another characteristic which is reflex-
ivity – if you are my relative, then I am your relative. Again, this is not and
cannot be true of parentOf, so we declare this :irreflexive.

(defoproperty hasRelative

:characteristic :reflexive)

(defoproperty parentOf

:characteristic :irreflexive)

And, finally, we move onto the last characteristic which is transitivity.
Your ancestors ancestor is your ancestor also.

(defoproperty hasAncestor

:characteristic :transitive)

The next two properties are nice and simple, expressiving father and
brotherhood.
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(defoproperty hasFather

:super hasParent)

(defoproperty hasBrother)

We can also define subchain properties. In this case, this says that a
property is the subproperty of two other links. So, for example, the parent
of a parent is also the grandparent. In this case, both properties are the
same, but we can also express more complex notions such as hasUncle with
is the brother of my father. A subchain can contain any number of properties
not just the two given here. We also show two different syntaxes: the first
is simpler, while the second encloses the subchain in []. The advantage of
the second syntax is that it allows more than one subchain to be expressed.

(defoproperty hasGrandparent

:subchain hasParent hasParent)

(defoproperty hasUncle

:subchain [hasFather hasBrother ])

Next we define a few more properties that we will use later on, and make
them disjoint.

(as-disjoint

(defoproperty hasDaughter

:super hasChild)

(defoproperty hasSon

:super hasChild ))

We now start to add more detail to some classes. Parent is simple enough
to define as someone with a child. Actually, we are less specific than this
and just say “something” with a child.

(defclass Parent

:equivalent (some hasChild Person ))

Now, we split the world of people up a bit further. The OWL Primer
does this is in a slightly erratic way. First it defines three classes YoungChild,
Father and Mother as disjoint. This is a strange way to model things for a
couple of reasons. Firstly, it does not define what young means but it is
possible to be a parent at an age that most people would describe as a
young child. Secondly, being a young child is a developmental stage, while
being a father or mother stems from an action in the past; so while mother
and child might happen to be disjoint, they are not naturally so; rather
their superclasses should be declared disjoint. Consider a simpler example:
elephants and cars are also disjoint, but if we build an ontology it would
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be better to say that animate and inanimate things are disjoint, and have
elephants and cars inherit this property. This form of ontology building is
known as ontology normalisation [?].

The second issue is the strange asymmetry between the definitions for
Father and Mother.

(as-disjoint

(defclass YoungChild)

(defclass Father :super

(and Man Parent ))

(defclass Mother

:super Woman

:equivalent (and Woman Parent )))

Rather than replicate this, in this version of the ontology, we instead
make YoungChild disjoint with Woman and Man, make the definition of Father
and Mother symmetrical and covering.

(as-disjoint

Woman Man

(defclass YoungChild ))

(as-subclasses

Parent

:cover :disjoint

(defclass Mother

:equivalent (and Woman Parent ))

(defclass Father

:equivalent (and Man Parent )))

One thing that is often confusing with OWL is that it copes well with
missing knowledge: we need to say the truth, and nothing but the truth;
the whole truth, however, is not so important.

So consider this definition of Grandfather; a man who is a parent. This
definition looks strangely like the definition for Father. The difference here
is that we are using the :super frame not :equivalent; it is necessarily true
that every Grandfather is a parent (or, if we substitute in the definition of
Parent, that every Grandfather has a Child). But, while being a Man with
a Child is sufficient to conclude they are a Father, they may well not be a
Grandfather.

(defclass Grandfather
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:super (and Man Parent ))

The next definition makes use of two new pieces of semantics; we define
ChildlessPerson to be equivalent to not Parent. At the same time, we
state much the same thing, but using an inverse statement; this returns
a property which is the inverse of the argument; in this case, the property
would be equivalent to hasChild but there does not need to be a named
inverse for this to work.

(defclass ChildlessPerson

:equivalent (and Person (not Parent ))

:super (and Person

(not

(some

(inverse hasParent)

(thing )))))

Next, we wish to define a HappyPerson as someone with only happy chil-
dren. Because Tawny-OWL has a define before use semantics, we have to
do this in two goes; first, with a defclass statement, and then using refine.

(defclass HappyPerson)

(refine HappyPerson

:equivalent (only hasChild HappyPerson ))

This looks like an odd thing to say; this would mean that a happy person
would have a happy child. But then the happy child would have to have a
happy child also, and their happy child would have to have a happy child.
There are circumstances when this kind of statement would be fine, but it
does not work with children. Actually, though, we have not say you must
have a happy child to be happy; that would look like this:

(refine HappyPerson

:equivalent (and (only hasChild HappyPerson)

(some hasChild HappyPerson )))

Instead, we have said, if you have children, they must be happy. Or
looked at another way, children can make you miserable, but they cannot
make you happy2.

Next we move onto annotation properties. We have already seen the
built-in properties, like comment and label. In Chapter 6, we used annota-
tions to represent one and three letter abbreviations for the amino-acids. We
do likewise here, and create a property called shortname and another called
nickname. For the latter, we also use the annotator function to create a new

2I never claimed that this ontology was a good reflection of the real world
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function creating annotations with this property; this is a fairly convienient
way of using annotations.

(defaproperty shortname

:super label-property)

(defaproperty nickname

:super label-property)

(def nick (annotator nickname ))

Next we add some individuals – each in this case a person. We create
three individuals. Mary is asserted to be Person and a Woman, while MaryBrown

is asserted to be the same as Mary. We do not know anything about Susan.

(defindividual Mary

:type Person Woman)

(defindividual MaryBrown

:same Mary)

(defindividual Susan)

With James we take a slight different approach and define two labels –
one “James” and one a specialism label which is the short name.

(defindividual James

:label "James"

:annotation (annotation shortname "Jim"))

For William we want to say a little more – we add the constraints that
over who his wife and daughter are not.

(defindividual William

:annotation (annotation shortname "Bill")

:fact

(not hasWife Mary)

(not hasDaughter Susan ))

Early, we asserted that Father is a class, but we might also want to make
it an individual – in this case, of SocialRole. The trick, called punning to
doing this in OWL is to create two entities with the same name, or IRI.
We achieve this in Tawny-OWL by passing an IRI in place of the name; if
we want to be able to refer to this entity later, we also need to assign it to
variable.

(defclass SocialRole)

(def iFather
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(individual (. getIRI Father)

:type SocialRole ))

We have little positive to say about Jack – but several negative things.
He is not a parent nor 53 years old. However, we do use the nick annotator
function that we created earlier to give him the unfortunate nick name “The
Cat”.

(defindividual Jack

:annotation (nick "The Cat")

:type Person (not Parent)

:fact (not hasAge (literal 53)))

John on the other hand, we have some useful things to say; in fact, we
say lots of things about his children. We say that he at least 2 children who
are parents, at most 4 children who are parents and exactly 3 children who
are parents – all a bit duplicative, but it showns the range of cardinality
constraints that it is possible to make. In addition, we say that he has 5
children in total, so we would assume this means 2 who are not parents. He
is not the same as William, has a wife Mary and is 51.

(defindividual John

:type Father

(at-least 2 hasChild Parent)

(exactly 3 hasChild Parent)

(exactly 5 hasChild)

(at-most 4 hasChild Parent)

:different William

:fact

(is hasWife Mary)

(is hasAge 51))

Mostly, in OWL, classes are defined in terms of classes, but it is possible
to define a class in terms of an individual with the has-value constructor,
in this case, JohnsChildren.

(defclass JohnsChildren

:equivalent (has-value hasParent John))

There is also a specialised relationship to describe tthe relationship an
individuals of a class have with themselves using has-self. This defini-
tion of NarcisiticPerson is not the same as either some loves Person nor
(only loves Person) – since this would be a person who loves a person,
which could be themselves, but does not have to be.

(defoproperty loves)
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(defclass NarcisticPerson

:equivalent (has-self loves ))

Our next definition, of Orphan makes use of an unnamed inverse of
hasChild. This is semantically equivalent to using hasParent, although the
named inverse property does not need to exist as here.

(defclass Dead)

(defclass Orphan

:equivalent (only (inverse hasChild) Dead))

We touched earlier of datatype properties which describe a relationship
between an individual and a piece of data; it is also possible to be restric-
tions on what that data can be. OWL has a large number of built-in data
types, but it is possible to define arbitrary new ones. Tawny-OWL provides
several syntaxes for going this – we use the long hand syntax first, to define
personAge which is, rather arbitrarily, an integer between 0 and 150.

(defdatatype personAge

:equivalent (min-max-inc 0 150))

The span macro provides a syntactic variant of min-mix-inc and other
related functions. We use this to define the age of a child as between 0 and
17, while we define the age of an adult using and and not. These functions
are the same functions we used earlier for defining logic restrictions, but
they work with datatypes too.

(defdatatype childAge

:equivalent (span >=< 0 17))

(defdatatype adultAge

:equivalent (and personAge (not childAge )))

We can define toddlerAge just by describing all the possibilities as there
are only two of them.

(defdatatype toddlerAge

:equivalent (oneof 1 2))

Again, oneof is overloaded and can be used either with datatype prop-
erties, data values (such as 1 and 2) or, as here, with individuals.

(defclass MyBirthdayGuests

:equivalent (oneof William John Mary))

We define a teenage as having an age between 13 and 19. We could also
have defined teenAge as a datatype and then used it here. Instead of either
min-max or the span syntax, here we have used the >< syntax which is found
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in tawny.english; this is the simplest syntax however some of the datatype
functions (< and >) also have equivalents in clojure.core; in this case we
have explicitly excluded the clojure.core functions, otherwise, we would
have a nameclash.

(defclass Teenager

:super (some hasAge (>< 13 19)))

Finally, we define a class and individual.

(defclass Female)

(defindividual Meg :type Female)

We define a GCI or General Concept Inclusion, which defines a general
rule relating two different class expressions. This allows us to draw a rela-
tionship between two unnamed classes. In this case, we are saying that one
of Mary, William or Meg is a parent with at most one daughter.

Despite the name “General”, GCIs have a relatively limited range of
applications; most ontologies do not make use of them and can use the
other features of OWL. But they are supported by OWL and, therefore,
also supported by Tawny-OWL.

(gci

(and Parent

(at-most 1 hasChild)

(only hasChild Female ))

(and (oneof Mary, William, Meg) Female ))

8.2 Recap

In this chapter, we have described the Family ontology and with it used to
describe every construct that the OWL language provides.

http://ontogenesis.knowledgeblog.org/1288
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Chapter 9

Conclusions

In this book, we have introduced Tawny-OWL as well as covering some of
the background for OWL and Ontology building in general. None of these
topics are simple ones and, of course, there is more to say about both.

However, taken together these tools provide a powerful environment for
the describing the world around us in a computationally amenable way. This
can be used to structure, query and order knowledge about the world. Per-
haps it is presumptuous, but with luck these somewhat prosaic capabilities
to allow us to understand the world a little better.

71


	Introduction
	Status
	What is an Ontology
	Who this book is for

	A Rapid Walk-Through
	A Taster
	Environment
	The OWL API
	Clojure
	Leiningen
	REPL
	IDE or Editor
	Testing
	Version Control and Collaboration
	Continuous Integration

	Recap

	An Introduction to OWL
	Individuals
	Properties
	Classes
	Identifiers
	Annotations

	Getting Started
	Installing Leiningen
	Creating a New Project
	Editing Our Ontology
	Summary


	The Pizza Ontology
	Introduction
	Creating the Skeleton
	Preamble
	Defining Classes
	Properties
	Populating the Ontology
	Describing a Pizza
	A simple pattern
	Defined Classes
	Recap

	Highly Patterned Ontologies
	Dealing with Patterns
	Creating the Amino Acid Ontology
	Defining the Amino Acids
	Recap

	More on Pizza
	Recap

	Keeping it in the Family
	Introduction
	The Ontology
	Recap

	Conclusions

